If A is a 3×3 non-singular matrix such that

Question:

If $\mathrm{A}$ is a $3 \times 3$ non-singular matrix such that $A A^{\top}=A^{\top} A$ and $\mathrm{B}=A^{-1} A^{\top}$, then $B B^{\top}=$_____________

Solution:

Given:

$A$ is a $3 \times 3$ non-singular matrix

$A A^{\top}=A^{\top} A$

$B=A^{-1} A^{\top}$

Now,

$B B^{\mathrm{T}}=\left(A^{-1} A^{\mathrm{T}}\right)\left(A^{-1} A^{\mathrm{T}}\right)^{\mathrm{T}}$

$=\left(A^{-1} A^{\mathrm{T}}\right)\left(A^{\mathrm{T}}\right)^{\mathrm{T}}\left(A^{-1}\right)^{\mathrm{T}}$

$=\left(A^{-1} A^{\mathrm{T}}\right)(A)\left(A^{\mathrm{T}}\right)^{-1}$

$=A^{-1}\left(A^{\mathrm{T}} A\right)\left(A^{\mathrm{T}}\right)^{-1}$

$=A^{-1}\left(A A^{\mathrm{T}}\right)\left(A^{\mathrm{T}}\right)^{-1} \quad\left(\because A^{\mathrm{T}} A=A A^{\mathrm{T}}\right)$

$=\left(A^{-1} A\right)\left(A^{\mathrm{T}}\left(A^{\mathrm{T}}\right)^{-1}\right)$

$=(I)(I)$

$=I$

Hence, $B B^{\top}=\underline{1}$.

Leave a comment