If A is 2 × 3 matrix and B is a matrix

Question:

If $A$ is $2 \times 3$ matrix and $B$ is a matrix such that $A^{\top} B$ and $B A^{\top}$ both are defined, then what is the order of $B$ ?

Solution:

Order of $A=2 \times 3$

Order of $A^{T}=3 \times 2$

Let order of $B=m \times n$

Given : $A^{T} B$ and $B A^{T}$ are defined

If $A^{T}{ }_{3 \times 2} B_{m \times n}$ exists, then the number of columns in $A^{T}$ must be equal to number of rows in $B$.

$\Rightarrow m=2$

If $B_{m \times n} A^{T} 3 \times 2$ exists, then the number of columns in $B$ must be equal to number of rows in $A^{T}$.

$\Rightarrow n=3$

$\therefore$ Order of $B=2 \times 3$

Leave a comment