If (a + ib) (c + id) (e + if) (g + ih) = A + iB, then show that

Question:

If $(a+i b)(c+i d)(e+i l)(g+i h)=A+i B$, then show that

$\left(a^{2}+b^{2}\right)\left(c^{2}+d^{2}\right)\left(e^{2}+f^{2}\right)\left(g^{2}+h^{2}\right)=A^{2}+B^{2}$

Solution:

$(a+i b)(c+i d)(e+i f)(g+i h)=\mathrm{A}+i \mathrm{~B}$

$\therefore|(a+i b)(c+i d)(e+i f)(g+i h)|=|\mathrm{A}+i \mathrm{~B}|$

$\Rightarrow|(a+i b)| \times|(c+i d)| \times|(e+i f)| \times|(g+i h)|=|\mathrm{A}+i \mathrm{~B}| \quad\left[\left|z_{1} z_{2}\right|=\left|z_{1}\right|\left|z_{2}\right|\right]$

$\Rightarrow \sqrt{a^{2}+b^{2}} \times \sqrt{c^{2}+d^{2}} \times \sqrt{e^{2}+f^{2}} \times \sqrt{g^{2}+h^{2}}=\sqrt{A^{2}+B^{2}}$

On squaring both sides, we obtain

$\left(a^{2}+b^{2}\right)\left(c^{2}+d^{2}\right)\left(e^{2}+f^{2}\right)\left(g^{2}+h^{2}\right)=\mathrm{A}^{2}+\mathrm{B}^{2}$

Hence, proved.

 

Leave a comment