If a hyperbola passes through the point $P(10,16)$ and it has vertices at $(\pm 6,0)$, then the equation of the normal to it at $P$ is:
Correct Option: , 2
Let the hyperbola is $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$
If a hyperbola passes through vertices at $(\pm 6,0)$, then
$\therefore \quad a=6$
As hyperbola passes through the point $P(10,16)$
$\therefore \quad \frac{100}{36}-\frac{256}{b^{2}}=1 \Rightarrow b^{2}=144$
$\therefore \quad$ Required hyperbola is $\frac{x^{2}}{36}-\frac{y^{2}}{144}=1$
$\therefore \quad$ Required hyperbola is $\frac{x^{2}}{36}-\frac{y^{2}}{144}=1$
Equation of normal is $\frac{a^{2} x}{x_{1}}+\frac{b^{2} y}{y_{1}}=a^{2}+b^{2}$
$\therefore \quad$ At $\mathrm{P}(10,16)$ normal is
$\frac{36 x}{10}+\frac{144 y}{16}=36+144$
$\therefore \quad 2 x+5 y=100 .$