Question:
If a hexagon ABCDEF circumscribe a circle, prove that
AB + CD + EF =BC + DE + FA
Solution:
Given A hexagon ABCDEF circumscribe a circle.
To prove $A B+C D+E F=B C+D E+F A$
Proof $\quad A B+C D+E F=(A Q+Q B)+(C S+S D)+(E U+U F)$
$=A P+B R+C R+D T+E T+F P$
$=(A P+F P)+(B R+C R)+(D T+E T)$
$A B+C D+E F=A F+B C+D E$
$A Q=A P$
$Q B=B R$
$C S=C R$
$D S=D T$
$E U=E T$
[tangents drawn from an external point to a circle are equal]
Hence proved.