Question:
If a function $g=\{(1,1),(2,3),(3,5),(4,7)\}$ is described by $g(x)=\alpha x+\beta$, then find the values of $\alpha$ and $\beta$.
[NCERT EXEMPLAR]
Solution:
We have,
A function $g=\{(1,1),(2,3),(3,5),(4,7)\}$ is described by $g(x)=\alpha x+\beta$
As, $g(1)=1$ and $g(2)=3$
So, $\alpha(1)+\beta=1$
$\Rightarrow \alpha+\beta=1 \quad \ldots \ldots(\mathrm{i})$
and $\alpha(2)+\beta=3$
$\Rightarrow 2 \alpha+\beta=3 \quad \ldots .(\mathrm{ii})$
$(\mathrm{ii})-(\mathrm{i})$, we get
$2 \alpha-\alpha=2$
$\Rightarrow \alpha=2$
Substituting $\alpha=2$ in $(\mathrm{i})$, we get
$2+\beta=1$
$\Rightarrow \beta=-1$