If |A| denotes the value of the determinant

Question:

If $|A|$ denotes the value of the determinant of a square matrix of order 3, then $|-2 \mathrm{~A}|=$ ____________

Solution:

Given: 
A is a 3 × 3 matrix

Now,

$|-2 A|=(-2)^{3}|A| \quad(\because$ Order of $A$ is $3 \times 3)$

$=-8|A|$

Hence, $|-2 A|=-8|\underline{A}|$.

Leave a comment