If a curve y=f(x) passes through the point

Question:

If a curve $y=f(x)$ passes through the point $(1,2)$ and satisfies $x \frac{\mathrm{d} y}{\mathrm{~d} x}+y=\mathrm{b} x^{4}$, then for what value of b, $\int_{1}^{2} f(x) \mathrm{d} x=\frac{62}{5} ?$

  1. (1) 5

  2. (2) $\frac{62}{5}$

  3. (3) $\frac{31}{5}$

  4. (4) 10


Correct Option: 4,

Solution:

$\frac{d y}{d x}+\frac{y}{x}=b x^{3} \cdot I . F .=e^{\int \frac{d x}{x}}=x$

$\therefore y x=\int b x^{4} d x=\frac{b x^{5}}{5}+c$

Passes through $(1,2)$, we get

$2=\frac{b}{5}+C \ldots \ldots(i)$

Also, $\int_{1}^{2}\left(\frac{b x^{4}}{5}+\frac{c}{x}\right) d x=\frac{62}{5}$

$\Rightarrow \frac{b}{25} \times 32+\operatorname{Cln} 2-\frac{b}{25}=\frac{62}{5} \Rightarrow C=0 \& b=10$

Leave a comment