Question:
If a curve passes through the point $(1,-2)$ and has slope of the tangent at any point $(x, y)$ on it as $\frac{x^{2}-2 y}{x}$, then the curve also passes through the point :
Correct Option: , 2
Solution:
$\because$ Slope of the tangent $=\frac{x^{2}-2 y}{x}$
$\because \quad \frac{d y}{d x}=\frac{x^{2}-2 y}{x}$
$\frac{d y}{d x}+\frac{2}{x} y=x$
I.F, $=e^{\int^{\frac{1}{4 x}}}=e^{2 \ln x}=x^{2}$
Solution of equation
$y \cdot x^{2}=\int x \cdot x^{2} d x$
$x^{2} y=\frac{x^{4}}{4}+C$
$\therefore$ curve passes through point $(1,-2)$
$(1)^{2}(-2)=\frac{1^{4}}{4}+C$
$\Rightarrow \quad C=\frac{-9}{4}$
Then, equation of curve
$y=\frac{x^{2}}{4}-\frac{9}{4 x^{2}}$
Since, above curve satisfies the point.
Hence, the curve passes through $(\sqrt{3}, 0)$.