If $a \cos 2 x+b \sin 2 x=c$ has $\alpha$ and $\beta$ as its roots, then prove that
(i) $\tan \alpha+\tan \beta=\frac{2 b}{a+c}$ [NCERT EXEMPLAR]
(ii) $\tan \alpha \tan \beta=\frac{c-a}{c+a}$
(iii) $\tan (\alpha+\beta)=\frac{b}{a}$ [NCERT EXEMPLAR]
Given: $a \cos 2 x+b \sin 2 x=c$
$\Rightarrow a\left(\frac{1-\tan ^{2} x}{1+\tan ^{2} x}\right)+b\left(\frac{2 \tan x}{1+\tan ^{2} x}\right)-c=0$
$\Rightarrow a\left(1-\tan ^{2} x\right)+2 b \tan x-c\left(1+\tan ^{2} x\right)=0$
$\Rightarrow a-a \tan ^{2} x+2 b \tan x-c-c \tan ^{2} x=0$
$\Rightarrow(a+c) \tan ^{2} x-2 b \tan x+(c-a)=0$ ....(1)
This a quadratic equation in terms of $\tan ^{2} x$.
It is given that $\alpha$ and $\beta$ are the roots of the given equation, so $\tan \alpha$ and $\tan \beta$ are the roots of (1).
Since $\tan \alpha$ and $\tan \beta$ are the roots of the equation $(a+c) \tan ^{2} x-2 b \tan x+(c-a)=0 .$ Therefore,
(i)
$\tan \alpha+\tan \beta=-\frac{(-2 b)}{a+c} \quad\left(\right.$ Sum of roots $\left.=-\frac{b}{a}\right)$
$\Rightarrow \tan \alpha+\tan \beta=\frac{2 b}{a+c}$
(ii)
$\tan \alpha \tan \beta=\frac{c-a}{a+c} \quad$ (Product of roots $=\frac{c}{a}$ )
Or $\tan \alpha \tan \beta=\frac{c-a}{c+a}$
(iii)
$\tan (\alpha+\beta)=\frac{\tan \alpha+\tan \beta}{1-\tan \alpha \tan \beta}$
$=\frac{\frac{2 b}{a+c}}{1-\left(\frac{c-a}{c+a}\right)}$ [From (i) and (ii)]
$=\frac{\frac{2 b}{a+c}}{\frac{c+a-c+a}{c+a}}$
$=\frac{2 b}{2 a}$
$=\frac{b}{a}$