If $\mathrm{a}=(\cos \theta+\mathrm{i} \sin \theta)$, prove that $\frac{1+\mathrm{a}}{1-\mathrm{a}}=\left(\cot \frac{\theta}{2}\right) \mathrm{i}$
Given: a = cosθ + isinθ
To prove: $\frac{1+a}{1-a}=\left(\cot \frac{\theta}{2}\right) i$
Taking LHS,
$\frac{1+a}{1-a}$
Putting the value of a, we get
$=\frac{1+\cos \theta+i \sin \theta}{1-(\cos \theta+i \sin \theta)}$
$=\frac{1+\cos \theta+i \sin \theta}{1-\cos \theta-i \sin \theta}$
We know that,
$1+\cos 2 \theta=2 \cos ^{2} \theta$
Or $1+\cos \theta=2 \cos ^{2} \frac{\theta}{2}$
And $1-\cos \theta=2 \sin ^{2} \frac{\theta}{2}$
Using the above two formulas
$=\frac{2 \cos ^{2} \frac{\theta}{2}+i \sin \theta}{2 \sin ^{2} \frac{\theta}{2}-i \sin \theta}$
Using, $\sin \theta=2 \sin \frac{\theta}{2} \cos \frac{\theta}{2}$
$=\frac{2 \cos ^{2} \frac{\theta}{2}+i 2 \sin \frac{\theta}{2} \cos \frac{\theta}{2}}{2 \sin ^{2} \frac{\theta}{2}-2 i \sin \frac{\theta}{2} \cos \frac{\theta}{2}}$
$=\frac{2 \cos \frac{\theta}{2}\left[\cos \frac{\theta}{2}+i \sin \frac{\theta}{2}\right]}{2 \sin \frac{\theta}{2}\left[\sin \frac{\theta}{2}-i \cos \frac{\theta}{2}\right]}$
$=\cot \frac{\theta}{2}\left[\frac{\cos \frac{\theta}{2}+i \sin \frac{\theta}{2}}{\sin \frac{\theta}{2}-i \cos \frac{\theta}{2}}\right]\left[\because \frac{\cos \theta}{\sin \theta}=\cot \theta\right]$
Rationalizing by multiply and divide by the conjugate of $\sin \frac{\theta}{2}-i \cos \frac{\theta}{2}$
$=\left(\cot \frac{\theta}{2}\right)\left[\frac{\cos \frac{\theta}{2}+i \sin \frac{\theta}{2}}{\sin \frac{\theta}{2}-i \cos \frac{\theta}{2}} \times \frac{\sin \frac{\theta}{2}+i \cos \frac{\theta}{2}}{\sin \frac{\theta}{2}+i \cos \frac{\theta}{2}}\right]$
$=\left(\cot \frac{\theta}{2}\right) \frac{\left(\cos \frac{\theta}{2}+i \sin \frac{\theta}{2}\right)\left(\sin \frac{\theta}{2}+i \cos \frac{\theta}{2}\right)}{\left(\sin \frac{\theta}{2}-i \cos \frac{\theta}{2}\right)\left(\sin \frac{\theta}{2}+i \cos \frac{\theta}{2}\right)}$
$=\left(\cot \frac{\theta}{2}\right) \frac{\left(\cos \frac{\theta}{2}\right)\left(\sin \frac{\theta}{2}+i \cos \frac{\theta}{2}\right)+i \sin \frac{\theta}{2}\left(\sin \frac{\theta}{2}+i \cos \frac{\theta}{2}\right)}{\left(\sin \frac{\theta}{2}\right)^{2}-\left(i \cos \frac{\theta}{2}\right)^{2}}$
$=\left(\cot \frac{\theta}{2}\right) \frac{\cos \frac{\theta}{2} \sin \frac{\theta}{2}+i \cos ^{2} \frac{\theta}{2}+i \sin ^{2} \frac{\theta}{2}+i^{2} \sin \frac{\theta}{2} \cos \frac{\theta}{2}}{\sin ^{2} \frac{\theta}{2}-i^{2} \cos ^{2} \frac{\theta}{2}}$
Putting $i^{2}=-1$, we get
$=\left(\cot \frac{\theta}{2}\right) \frac{\cos \frac{\theta}{2} \sin \frac{\theta}{2}+i \cos ^{2} \frac{\theta}{2}+i \sin ^{2} \frac{\theta}{2}+(-1) \sin \frac{\theta}{2} \cos \frac{\theta}{2}}{\sin ^{2} \frac{\theta}{2}-(-1) \cos ^{2} \frac{\theta}{2}}$
$=\left(\cot \frac{\theta}{2}\right) \frac{\cos \frac{\theta}{2} \sin \frac{\theta}{2}+i\left(\cos ^{2} \frac{\theta}{2}+\sin ^{2} \frac{\theta}{2}\right)-\sin \frac{\theta}{2} \cos \frac{\theta}{2}}{\sin ^{2} \frac{\theta}{2}+\cos ^{2} \frac{\theta}{2}}$
We know that,
$\cos ^{2} \theta+\sin ^{2} \theta=1$
$=\left(\cot \frac{\theta}{2}\right)\left[\frac{i\left(\cos ^{2} \frac{\theta}{2}+\sin ^{2} \frac{\theta}{2}\right)}{1}\right]$
$=\cot \frac{\theta}{2}(i)$
= RHS
Hence Proved