Question:
If a complex number coincides with its conjugate, then it lies on ____________.
Solution:
Let $z=x+i y$ and $\bar{z}=\overline{x+i y}$
$\bar{z}=x-i y$
Since $z=\bar{z}$ (given)
$\Rightarrow x+i y=x-i y$
$\Rightarrow i y=-i y$
$\Rightarrow 2 i y=0$
i.e $y=0$
Then $z$ lies an $x$-axis.