Question:
If $A \subset B$, show that $\left(B^{\prime}-A^{\prime}\right)=\phi$
Solution:
As $A \subset B$ the set $A$ is inside set $B$
Hence $A \cup B=B$
Taking compliment
$\Rightarrow(\mathrm{A} \cup \mathrm{B})^{\prime}=\mathrm{B}^{\prime}$
Using De-Morgan's law $(A \cup B)^{\prime}=A^{\prime} \cap B^{\prime}$
$\Rightarrow A^{\prime} \cap B^{\prime}=B^{\prime} \ldots$ (i)
Now we know that
$B^{\prime}=\left(B^{\prime}-A^{\prime}\right)+\left(A^{\prime} \cap B^{\prime}\right)$
Using (i)
$\Rightarrow B^{\prime}=\left(B^{\prime}-A^{\prime}\right)+B^{\prime}$
$\Rightarrow\left(B^{\prime}-A^{\prime}\right)=B^{\prime}-B^{\prime}$
$\Rightarrow\left(B^{\prime}-A^{\prime}\right)=0$
$\Rightarrow\left(B^{\prime}-A^{\prime}\right)=\{\phi\}$
Hence proved