If A + B + C = π, prove that
$\frac{\cos A}{\sin B \sin C}+\frac{\cos B}{\sin C \sin A}+\frac{\cos C}{\sin A \sin B}=2$
$=\frac{\cos A}{\sin B \sin C}+\frac{\cos B}{\sin C \sin A}+\frac{\cos C}{\sin A \sin B}$
Taking L.C.M
$=\frac{\cos A \sin A+\cos B \sin B+\cos C \sin C}{\sin B \sin C \sin A}$
Multiplying and divide the above equation by 2, we get
$=\frac{2 \cos A \sin A+2 \cos B \sin B+2 \cos C \sin C}{2 \sin B \sin C \sin A}$
Since , sin2A = 2sinAcosA
$=\frac{\sin 2 A+\sin 2 B+\sin 2 C}{2 \sin B \sin C \sin A}$
Now,
$=\sin 2 A+\sin 2 B+\sin 2 C$
$=2 \sin A \cos A+2 \sin (B+C) \cos (B-C)$
since A + B + C = π
$\rightarrow \mathrm{B}+\mathrm{A}=180-\mathrm{C}$
$=2 \sin A \cos A+2 \sin (\pi-A) \cos (B-C)$
$=2 \sin A \cos A+2 \sin A \cos (B-C)$
$=2 \sin A\{\cos A+\cos (B-C)\}$
$($ but $\cos A=\cos \{180-(B+C)\}=-\cos (B+C)$
And now using $\cos A-\cos B=2 \sin \left(\frac{A+B}{2}\right) \sin \left(\frac{-A+B}{2}\right)$
$=2 \sin A\{2 \sin B \sin C\}$
$=4 \sin A \sin B \sin C$
Putting the above value in the equation, we get
$=\frac{4 \sin A \sin B \sin C}{2 \sin B \sin C \sin A}$
= 2
= R.H.S