If A + B + C = π, prove that

Question:

If A + B + C = π, prove that

$\frac{\sin 2 A+\sin 2 B+\sin 2 C}{\sin A+\sin B+\sin C}=8 \sin \frac{A}{2} \sin \frac{B}{2} \sin \frac{C}{2}$

 

Solution:

= sin2A + sin2B + sin2C

Using,

$\sin A+\sin B=2 \sin \left(\frac{A+B}{2}\right) \cos \left(\frac{A-B}{2}\right)$

$\sin 2 A=2 \sin A \cos A$

$=2 \sin A \cos A+2 \sin (B+C) \cos (B-C)$

since $A+B+C=\pi$

$\rightarrow \mathrm{B}+\mathrm{C}=180-\mathrm{A}$

$=2 \sin A \cos A+2 \sin (\pi-A) \cos (B-C)$

$=2 \sin A \cos A+2 \sin A \cos (B-C)$

$=2 \sin A\{\cos A+\cos (B-C)\}$

(but $\cos A=\cos \{180-(B+C)\}=-\cos (B+C)$

And now using $\cos A-\cos B=2 \sin \left(\frac{A+B}{2}\right) \sin \left(\frac{-A+B}{2}\right)$

$=2 \sin A\{2 \sin B \sin C\}$

$=4 \sin A \sin B \sin C$

$=32 \sin \frac{A}{2} \cos \frac{A}{2} \sin \frac{B}{2} \cos \frac{B}{2} \sin \frac{C}{2} \cos \frac{C}{2}$

Now,

= sinA + sinB + sinC

Using,

$\sin A+\sin B=2 \sin \left(\frac{A+B}{2}\right) \cos \left(\frac{A-B}{2}\right)$

$=\sin A+\left\{2 \sin \left(\frac{B+C}{2}\right) \cos \left(\frac{B-C}{2}\right)\right\}$

$=\sin A+\left\{2 \sin \left(\frac{\pi-A}{2}\right) \cos \left(\frac{B-C}{2}\right)\right\}$

$=\sin A+\left\{2 \cos \left(\frac{A}{2}\right) \cos \left(\frac{B-C}{2}\right)\right\}$

$=2 \sin \frac{A}{2} \cos \frac{A}{2}+\left\{2 \cos \left(\frac{A}{2}\right) \cos \left(\frac{B-C}{2}\right)\right\}$

$=2 \cos \frac{A}{2}\left\{\sin \frac{A}{2}+\cos \left(\frac{B-C}{2}\right)\right\}$

$=2 \cos \frac{A}{2}\left\{\cos \left(\frac{B+C}{2}\right)+\cos \left(\frac{B-C}{2}\right)\right\}$

$=2 \cos \frac{A}{2}\left\{2 \cos \left(\frac{B}{2}\right) \cos \left(\frac{C}{2}\right)\right\}$

$=4 \cos \frac{A}{2} \cos \left(\frac{B}{2}\right) \cos \left(\frac{C}{2}\right)$

Therefore,

$=\frac{32 \sin \frac{A}{2} \cos \frac{A}{2} \sin \frac{B}{2} \cos \frac{B}{2} \sin \frac{C}{2} \cos \frac{C}{2}}{4 \cos \frac{A}{2} \cos \frac{B}{2} \cos \frac{C}{2}}$

$=8 \sin \frac{\mathrm{A}}{2} \sin \frac{\mathrm{B}}{2} \sin \frac{\mathrm{C}}{2}$

= R.H.S

 

Leave a comment