If A + B + C = π, prove that
$\sin A+\sin B+\sin C=4 \cos \frac{A}{2} \cos \frac{B}{2} \cos \frac{C}{2}$
= sinA + sinB + sinC
Using,
$\sin A+\sin B=2 \sin \left(\frac{A+B}{2}\right) \cos \left(\frac{A-B}{2}\right)$
$=\sin A+\left\{2 \sin \left(\frac{B+C}{2}\right) \cos \left(\frac{B-C}{2}\right)\right\}$
Since $A+B+C=\pi$
$\rightarrow \mathrm{B}+\mathrm{C}=180-\mathrm{A}$
And,
$\sin \left(\frac{\pi}{2}-\mathrm{A}\right)=\cos \mathrm{A}$
$=\sin A+\left\{2 \sin \left(\frac{\pi-A}{2}\right) \cos \left(\frac{B-C}{2}\right)\right\}$
$=\sin A+\left\{2 \cos \left(\frac{A}{2}\right) \cos \left(\frac{B-C}{2}\right)\right\}$
Using, $\sin 2 A=2 \sin A \cos A$
$=2 \sin \frac{A}{2} \cos \frac{A}{2}+\left\{2 \cos \left(\frac{A}{2}\right) \cos \left(\frac{B-C}{2}\right)\right\}$
$=2 \cos \frac{A}{2}\left\{\sin \frac{A}{2}+\cos \left(\frac{B-C}{2}\right)\right\}$
$\rightarrow \mathrm{B}+\mathrm{C}=180-\mathrm{A}$
And
$\sin \left(\frac{\pi}{2}-A\right)=\cos A$
$=2 \cos \frac{A}{2}\left\{\cos \left(\frac{B+C}{2}\right)+\cos \left(\frac{B-C}{2}\right)\right\}$
$=2 \cos \frac{A}{2}\left\{2 \cos \left(\frac{B}{2}\right) \cos \left(\frac{C}{2}\right)\right\}$
$=4 \cos \frac{A}{2} \cos \left(\frac{B}{2}\right) \cos \left(\frac{C}{2}\right)$
= R.H.S