If A + B + C = π, prove that
$\sin ^{2} A-\sin ^{2} B+\sin ^{2} C=2 \sin A \cos B \sin C$
$=\sin ^{2} A-\sin ^{2} B+\sin ^{2} C$
Using formula,
$\frac{1-\cos 2 A}{2}=\sin ^{2} A$
$=\frac{1-\cos 2 \mathrm{~A}}{2}-\frac{1-\cos 2 \mathrm{~B}}{2}+\frac{1-\cos 2 \mathrm{C}}{2}$
$=\frac{1-\cos 2 \mathrm{~A}-1+\cos 2 \mathrm{~B}+1-\cos 2 \mathrm{C}}{2}$
$=\frac{1-\cos 2 \mathrm{~A}+\cos 2 \mathrm{~B}-\cos 2 \mathrm{C}}{2}$
Using ,
$\cos A-\cos B=2 \sin \left(\frac{A+B}{2}\right) \sin \left(\frac{B-A}{2}\right)$
$=\frac{1-\cos 2 \mathrm{~A}+\left\{2 \sin \left(\frac{2 \mathrm{~B}+2 \mathrm{C}}{2}\right) \sin \left(\frac{2 \mathrm{C}-2 \mathrm{~B}}{2}\right)\right\}}{2}$
$=\frac{1-\cos 2 \mathrm{~A}+2 \sin (\mathrm{B}+\mathrm{C}) \sin (\mathrm{C}-\mathrm{B})}{2}$
since A + B + C = π
$\rightarrow \mathrm{B}+\mathrm{C}=180-\mathrm{A}$
And $\sin (\pi-A)=\sin A$
$=\frac{1-\cos 2 A+2 \sin (\pi-A) \sin (C-B)}{2}$
$=\frac{1-\cos 2 A+2 \sin A \sin (C-B)}{2}$
Using, $\cos 2 A=1-2 \sin ^{2} A$
$=\frac{1-1+2 \sin ^{2} A+2 \sin A \sin (C-B)}{2}$
$=\frac{2 \sin A\{\sin A+\sin (C-B)\}}{2}$
$=\frac{2 \sin A\{\sin A+\sin (C-B)\}}{2}$
$\sin A+\sin B=2 \sin \left(\frac{A+B}{2}\right) \cos \left(\frac{A-B}{2}\right)$
$=\frac{2 \sin A\left\{2 \sin \left(\frac{A+C-B}{2}\right) \cos \left(\frac{A-C+B}{2}\right)\right\}}{2}$
$=\frac{1-2 \sin A\left\{2 \sin \left(\frac{\pi-B-B}{2}\right) \cos \left(\frac{\pi-C-C}{2}\right)\right\}}{2}$
$=\frac{2 \sin A\left\{2 \sin \left(\frac{\pi}{2}-\frac{2 B}{2}\right) \cos \left(\frac{\pi}{2}-\frac{2 C}{2}\right)\right\}}{2}$
As, $\sin \left(\frac{\pi}{2}-\mathrm{A}\right)=\cos \mathrm{A}$
$=\frac{2 \sin A\{2 \cos B \sin C\}}{2}$
= 2sinAcosBsinC
= R.H.S