If A + B + C = π, prove that
$\sin (B+C-A)+\sin (C+A-B)-\sin (A+B-C)=4 \cos A \cos B \sin C$
$=\sin (B+C-A)+\sin (C+A-B)-\sin (A+B-C)$
Using,
$\sin A+\sin B=2 \sin \left(\frac{A+B}{2}\right) \cos \left(\frac{A-B}{2}\right)$
$=2 \sin C \cos (B-A)-\sin (A+B-C)$
Since $A+B+C=\pi$
$\rightarrow \mathrm{B}+\mathrm{A}=180-\mathrm{C}$
$=2 \sin C \cos (B-A)-\sin (\pi-C-C)$
$=2 \sin C \cos (B-A)-\sin 2 C$
Since , sin2A = 2sinAcosA,
$=2 \sin C \cos (B-A)-2 \sin C \cos C$
$=2 \sin C\{\cos (B-A)-\cos C\}$
Using ,
$\cos A-\cos B=2 \sin \left(\frac{A+B}{2}\right) \sin \left(\frac{B-A}{2}\right)$
$=2 \sin C\left\{2 \sin \left(\frac{B-A+C}{2}\right) \sin \left(\frac{C-B+A}{2}\right)\right\}$
$=2 \sin C\left\{2 \sin \left(\frac{\pi-A-A}{2}\right) \sin \left(\frac{\pi-B-B}{2}\right)\right\}$
= 4cosAcosBsinC
= R.H.S