Question:
If A + B + C = π, prove that
$\tan 2 A+\tan 2 B+\tan 2 C=\tan 2 A \tan 2 B \tan 2 C$
Solution:
= tan 2A + tan 2B + tan 2C
Since $A+B+C=\pi$
$A+B=\pi-C$
$2 A+2 B=2 \pi-2 C$
$\operatorname{Tan}(2 A+2 B)=\tan (2 \pi-2 C)$
Since $\tan (2 \pi-C)=-\tan C$
$\operatorname{Tan}(2 A+2 B)=-\tan 2 C$
Now using formula,
$\tan (A+B)=\frac{\tan A+\tan B}{1-\tan A \tan B}$
$\frac{\tan 2 \mathrm{~A}+\tan 2 \mathrm{~B}}{1-\tan 2 \mathrm{~A} \tan 2 \mathrm{~B}}=-\tan 2 \mathrm{C}$
Tan $2 A+\tan 2 B=-\tan 2 C+\tan 2 C \tan 2 B \tan 2 A$
Tan $2 A+\tan 2 B+\tan 2 C=\tan 2 A \tan 2 B \tan 2 C$
= R.H.S