If a, b, c, d are in GP, then prove that
$\frac{1}{\left(a^{2}+b^{2}\right)}, \frac{1}{\left(b^{2}+c^{2}\right)}, \frac{1}{\left(c^{2}+d^{2}\right)}$ are in GP
To prove: $\frac{1}{\left(a^{2}+b^{2}\right)}, \frac{1}{\left(b^{2}+c^{2}\right)}, \frac{1}{\left(c^{2}+d^{2}\right)}$ are in GP.
Given: $a, b, c, d$ are in GP
Proof: When $a, b, c, d$ are in GP then
$\Rightarrow \frac{b}{a}=\frac{c}{b}=\frac{d}{c}$
From the above, we can have the following conclusion
$\Rightarrow \mathrm{bc}=\mathrm{ad} \ldots$ (i)
$\Rightarrow \mathrm{b}^{2}=\mathrm{ac} \ldots$ (ii)
$\Rightarrow \mathrm{c}^{2}=\mathrm{bd} \ldots$ (iii)
Considering $\frac{1}{\left(a^{2}+b^{2}\right)}, \frac{1}{\left(b^{2}+c^{2}\right)}, \frac{1}{\left(c^{2}+d^{2}\right)}$
$\frac{1}{\left(a^{2}+b^{2}\right)} \times \frac{1}{\left(c^{2}+d^{2}\right)}=\frac{1}{a^{2} c^{2}+a^{2} d^{2}+b^{2} c^{2}+b^{2} d^{2}}$
$=\frac{1}{(a c)^{2}+(a d)^{2}+(b c)^{2}+(b d)^{2}}$
From eqn. (i) , (ii) and (iii)
$=\frac{1}{\left(b^{2}\right)^{2}+(b c)^{2}+(b c)^{2}+\left(c^{2}\right)^{2}}$
$=\frac{1}{b^{4}+2 b^{2} c^{2}+c^{4}}$
$\frac{1}{\left(a^{2}+b^{2}\right)} \times \frac{1}{\left(c^{2}+d^{2}\right)}=\frac{1}{\left(b^{2}+c^{2}\right)^{2}}$
From the above equation, we can say that $\frac{1}{\left(a^{2}+b^{2}\right)}, \frac{1}{\left(b^{2}+c^{2}\right)}, \frac{1}{\left(c^{2}+d^{2}\right)}$
are in GP.