Question:
If a, b, c are three distinct real numbers in G.P. and a + b + c = xb, then prove that either x < −1 or x > 3.
Solution:
Let $r$ be the common ratio of the given G.P.
$\therefore b=a r$ and $c=a r^{2}$
Now, $a+b+c=b x$
$\Rightarrow a+a r+a r^{2}=a r x$
$\Rightarrow r^{2}+(1-x) r+1=0$
$r$ is always a real number.
$\therefore \mathrm{D} \geq 0$
$\Rightarrow(1-x)^{2}-4 \geq 0$
$\Rightarrow x^{2}-2 x-3 \geq 0$
$\Rightarrow(x-3)(x+1) \geq 0$
$\Rightarrow x>3$ or $x<-1$ and $x \neq 3$ or $-1 \quad[\because a, b$ and $c$ are distinct real numbers $]$