If A, B, C are the interior angles of a triangle ABC, prove that
(i) $\tan \left(\frac{C+A}{2}\right)=\cot \frac{B}{2}$
(ii) $\sin \left(\frac{B+C}{2}\right)=\cos \frac{A}{2}$
(i) We have to prove: $\tan \left(\frac{C+A}{2}\right)=\cot \frac{B}{2}$
Since we know that in triangle $A B C$
$A+B+C=180$
$\Rightarrow C+A=180^{\circ}-B$
$\Rightarrow \frac{C+A}{2}=90^{\circ}-\frac{B}{2}$
$\Rightarrow \tan \frac{C+A}{2}=\tan \left(90^{\circ}-\frac{B}{2}\right)$
$\Rightarrow \tan \frac{C+A}{2}=\cot \frac{B}{2}$
Proved
(ii) We have to prove: $\sin \left(\frac{B+C}{2}\right)=\cos \frac{A}{2}$
Since we know that in triangle $A B C$
$A+B+C=180$
$\Rightarrow B+C=180^{\circ}-A$
$\Rightarrow \frac{B+C}{2}=90^{\circ}-\frac{A}{2}$
$\Rightarrow \sin \frac{B+C}{2}=\sin \left(90^{\circ}-\frac{A}{2}\right)$
$\Rightarrow \sin \frac{B+C}{2}=\cos \frac{A}{2}$
Proved