If A, B, C are the interior angles of a ∆ABC, show that :
(i) $\sin \frac{B+C}{2}=\cos \frac{A}{2}$
(ii) $\cos \frac{B+C}{2}=\sin \frac{A}{2}$
(i) We have to prove: $\sin \left(\frac{B+C}{2}\right)=\cos \frac{A}{2}$
Since we know that in triangle $A B C$
$A+B+C=180^{\circ}$
$\Rightarrow B+C=180^{\circ}-A$
Dividing by 2 on both sides, we get
$\Rightarrow \frac{B+C}{2}=90^{\circ}-\frac{A}{2}$
$\Rightarrow \sin \frac{B+C}{2}=\sin \left(90^{\circ}-\frac{A}{2}\right)$
$\Rightarrow \sin \frac{B+C}{2}=\cos \frac{A}{2}$
Proved
(ii) We have to prove: $\cos \left(\frac{B+C}{2}\right)=\sin \frac{A}{2}$
Since we know that in triangle $A B C$
$A+B+C=180^{\circ}$
$\Rightarrow B+C=180^{\circ}-A$
Dividing by 2 on both sides, we get
$\Rightarrow \frac{B+C}{2}=90^{\circ}-\frac{A}{2}$
$\Rightarrow \cos \frac{B+C}{2}=\cos \left(90^{\circ}-\frac{A}{2}\right)$
$\Rightarrow \cos \frac{B+C}{2}=\sin \frac{A}{2}$
Proved