If $a, b, c$ are real numbers such that $\left|\begin{array}{lll}b+c & c+a & a+b \\ c+a & a+b & b+c \\ a+b & b+c & c+a\end{array}\right|=0$, then show that either $a+b+c=0$ or, $a=b=c$.
Let $\Delta=\mid b+c c+a \quad a+b$
$c+a \quad a+b b+c$
$a+b b+c \quad c+a$
$=\mid 2(a+b+c) 2(a+b+c) 2(a+b+c)$
$\begin{array}{lll}c+a & a+b & b+c \\ a+b & b+c & c+a \mid\end{array}$ [Applying $R_{1} \rightarrow R_{1}+R_{2}+R_{3}$ ]
$=2(a+b+c) \mid \begin{array}{lll}1 & 1 & 1\end{array}$
$c+a+b b+c$
$a+b b+c c+a$
$=2(a+b+c) \mid \quad 1 \quad 0 \quad 0$
$c+a b-c b-a$
$a+b c-a c-b \mid$ [Applying $C_{2} \rightarrow C_{2}-C_{1}$ and $C_{3} \rightarrow C_{3}-C_{1}$ ]
$=2(a+b+c)\left\{1\left|\begin{array}{ll}b-c & b-a \\ c-a & c-b\end{array}\right|\right\}$
$=2(a+b+c)\{(b-c)(c-b)-(b-a)(c-a)\}$
$=-2(a+b+c)\left\{a^{2}+b^{2}+c^{2}-a b-b c-c a\right\}$
$=-(a+b+c)\left\{2 a^{2}+2 b^{2}+2 c^{2}-2 a b-2 b c-2 c a\right\}$
$=-(a+b+c)\left\{(a-b)^{2}+(b-c)^{2}+(c-a)^{2}\right\}$
But $\Delta=0$
[Given]
$\Rightarrow-(a+b+c)\left\{(a-b)^{2}+(b-c)^{2}+(c-a)^{2}\right\}=0$
$\Rightarrow$ Either $(\mathrm{a}+\mathrm{b}+\mathrm{c})=0$ or $(a-b)^{2}+(b-c)^{2}+(c-a)^{2}=0$
$\Rightarrow(\mathrm{a}+\mathrm{b}+\mathrm{c})=0$ or $a=\mathrm{b}=\mathrm{c}$
Hence proved.