If $a, b, c$ are non-zero real numbers and if the system of equations
$(a-1) x=y+z$
$(b-1) y=z+x$
$(c-1) z=x+y$
has a non-trivial solution, then prove that $a b+b c+c a=a b c$.
The three equations can be expressed as
$(a-1) x-y-z=0$
$-x+(b-1) y-z=0$
$-x-y+(c-1) z=0$
Expressing this as a determinant, we get
$\Delta=\left|\begin{array}{ccc}(a-1) & -1 & -1 \\ -1 & (b-1) & -1 \\ -1 & -1 & (c-1)\end{array}\right|$
If the matrix has a non-trivial solution, then
$\left|\begin{array}{ccc}(a-1) & -1 & -1 \\ -1 & (b-1) & -1 \\ -1 & -1 & (c-1)\end{array}\right|=0$
$\Rightarrow(a-1)[(b-1)(c-1)-1]+1[-(c-1)-1]-1[1+b-1]=0$
$\Rightarrow(a-1)[b c-c-b+1-1]+1[-c+1-1]-1[b]=0$
$\Rightarrow(a-1)[b c-b-c]-c-b=0$
$\Rightarrow a b c-a b-a c-b c+b+c-b-c=0$
$\Rightarrow a b+a c+b c=a b c$
Hence proved.