If a, b, c are in GP, prove that $\frac{a^{2}+a b+b^{2}}{a b+b c+c a}=\frac{b+a}{c+b}$
To prove: $\frac{a^{2}+a b+b^{2}}{a b+b c+c a}=\frac{b+a}{c+b}$
Given: a, b, c are in GP
Formula used: When $a, b, c$ are in GP, $b^{2}=a c$
a, b, c are in GP
$\Rightarrow \mathrm{b}^{2}=\mathrm{ac} \ldots$ (i)
$\Rightarrow \mathrm{b}=\sqrt{\mathrm{ac}}$ … (ii)
Taking LHS = $\frac{a^{2}+a b+b^{2}}{a b+b c+c a}$
Substituting the value $b^{2}=a c$ from eqn. (i)
$\mathrm{LHS}=\frac{\mathrm{a}^{2}+\mathrm{ab}+\mathrm{ac}}{\mathrm{ab}+\mathrm{bc}+\mathrm{b}^{2}}$
$\Rightarrow \frac{a(a+b+c)}{b(a+b+c)}$
$\Rightarrow \frac{a}{b}$
Substituting the value $b=\sqrt{a c}$ from eqn. (ii)
$\Rightarrow \frac{a}{\sqrt{a c}}$
$\Rightarrow \frac{\sqrt{a}}{\sqrt{c}}$
Multiplying and dividing with $(\sqrt{a}+\sqrt{c})$
$\Rightarrow \frac{\sqrt{a}(\sqrt{a}+\sqrt{c})}{\sqrt{c}(\sqrt{a}+\sqrt{c})}$
$\Rightarrow \frac{(a+\sqrt{a c})}{(\sqrt{a c}+c)}$
$\Rightarrow \frac{a+b}{b+c}=R H S$
Hence Proved