Question:
If $a, b, c$ are in G.P., then prove that: $\frac{a^{2}+a b+b^{2}}{b c+c a+a b}=\frac{b+a}{c+b}$
Solution:
$a, b$ and $c$ are in G. P.
$\therefore b^{2}=a c \quad \ldots \ldots \ldots(\mathrm{i})$
Now, LHS $=\frac{a^{2}+a b+b^{2}}{b c+c a+a b}$
$=\frac{\mathrm{a}^{2}+\mathrm{ab}+\mathrm{ac}}{\mathrm{bc}+\mathrm{b}^{2}+\mathrm{ab}}$ [Using (i)]
$=\frac{a(a+b+c)}{b(c+b+a)}$
$=\frac{a}{b}$
$=\frac{1}{r}$
Here, $r=$ common ratio
$\mathrm{RHS}=\frac{b+a}{c+b}$
$=\frac{a r+a}{a r^{2}+a r}$
$=\frac{a(r+1)}{a r(r+1)}$
$=\frac{1}{r}$
$\therefore \mathrm{LHS}=\mathrm{RHS}$