If a, b, c are in A.P., prove that:
(i) (a − c)2 = 4 (a − b) (b − c)
(ii) a2 + c2 + 4ac = 2 (ab + bc + ca)
(iii) a3 + c3 + 6abc = 8b3.
Since a, b, c are in A.P., we have:
2b = a+c
$\Rightarrow b=\frac{a+c}{2}$
(i) Consider RHS:
4 (a − b) (b − c)
Substituting $b=\frac{a+c}{2}:$
$\Rightarrow 4\left\{a-\frac{a+c}{2}\right\}\left\{\frac{a+c}{2}-c\right\}$
$\Rightarrow 4\left\{\frac{2 a-a-c}{2}\right\}\left\{\frac{a+c-2 c}{2}\right\}$
$\Rightarrow(a-c)(a-c)$
$\Rightarrow(a-c)^{2}$
Hence, proved.
(ii) Consider RHS:
2 (ab + bc + ca)
Substituting $b=\frac{a+c}{2}$ :
$\Rightarrow 2\left\{a\left(\frac{a+c}{2}\right)+c\left(\frac{a+c}{2}\right)+a c\right\}$
$\Rightarrow 2\left\{\frac{a^{2}+a c+a c+c^{2}+2 a c}{2}\right\}$
$\Rightarrow a^{2}+4 a c+c^{2}$
Hence, proved.
(iii) Consider RHS:
$8 b^{3}$
Substituting $b=\frac{a+c}{2}$
$\Rightarrow 8\left(\frac{a+c}{2}\right)^{3}$
$\Rightarrow a^{3}+c^{3}+3 a c(a+c)$
$\Rightarrow a^{3}+c^{3}+3 a c(2 b)$
$\Rightarrow a^{3}+c^{3}+6 a b c$
Hence, proved.