Question:
If a, b, c are in A.P. and x, y, z are in G.P., then the value of xb − c yc − a za − b is
(a) 0
(b) 1
(c) xyz
(d) xa yb zc
Solution:
(b) 1
$a, b$ and $c$ are in A.P.
$\therefore 2 b=a+c$ .....(1)
And, $x, y$ and $z$ are in G.P.
$\therefore y^{2}=x z$
Now, $x^{b-c} y^{c-a} z^{a-b}$
$=x^{b+a-2 b} y^{2 b-a-a} z^{a-b} \quad[$ From $(\mathrm{i})]$
$=x^{a-b} y^{2(b-a)} z^{a-b}$
$=(x z)^{a-b}(x z)^{b-a} \quad\left[\right.$ From (ii),$\left.y^{2}=x z\right]$
$=(\mathrm{xz})^{0}$
$=1$