If a, b, c are GP, then show that $\frac{1}{\log _{a} m} \frac{1}{\log _{b} m}, \frac{1}{\log _{c} m}$ are in AP
To prove: $\frac{1}{\log _{a} m}, \frac{1}{\log _{b} m^{\prime}}, \frac{1}{\log _{c} m}$ are in AP.
Given: a, b, c are in GP
Formula used: (i) $\frac{1}{\log _{a} m}=\log _{m} a=\frac{\log a}{\log m}$
As, a, b, c are in GP
$\Rightarrow \frac{b}{a}=\frac{c}{b}$
Taking log both side $\log \frac{b}{a}=\log \frac{c}{b}$
$\Rightarrow \log b-\log a=\log c-\log b$
$\Rightarrow 2 \log b=\log a+\log c$
Dividing by log m
$\Rightarrow 2\left(\frac{\log \mathrm{b}}{\log \mathrm{m}}\right)=\frac{\log \mathrm{a}}{\log \mathrm{m}}+\frac{\log \mathrm{c}}{\log \mathrm{m}}$
$\Rightarrow 2 \log _{m} b=\log _{m} a+\log _{m} c \quad\left(\right.$ As, $\left.\log _{m} a=\frac{\log a}{\log m}\right)$
$2\left(\frac{1}{\log _{b} m}\right)=\frac{1}{\log _{a} m}+\frac{1}{\log _{c} m}\left(\right.$ As $\left.\frac{1}{\log _{a} m}=\log _{m} a\right)$
Whenever any number a,b,c are in AP then 2b = a+c, considering this and the above
equation we can say that $\frac{1}{\log _{a} m}, \frac{1}{\log _{b} m}, \frac{1}{\log _{c} m}$ are in AP
Hence proved