Question:
If $a, b, c$ are distinct, then the value of $x$ satisfying $\left|\begin{array}{ccc}0 & x^{2}-a & x^{3}-b \\ x^{2}+a & 0 & x^{2}+c \\ x^{4}+b & x-c & 0\end{array}\right|=0$ is
(a) $c$
(b) $a$
(c) $b$
(d) 0
Solution:
(d) 0
When we put $x=0$ in the given matrix, then it turns out to be the skew symmetric matrix of order 3 and the determinant of the skew symmetric matrix of odd order is always 0 .