Question:
If $a+b+c=9$ and $a b+b c+c a=26$, Find the value of $a^{3}+b^{3}+c^{3}-3 a b c$
Solution:
Given,
a + b + c = 9 and ab + bc + ca = 26
We know that,
$(a+b+c)^{2}=a^{2}+b^{2}+c^{2}+2(a b+b c+c a)$
$(a+b+c)^{2}=a^{2}+b^{2}+c^{2}+2(26)$
$(a+b+c)^{2}=a^{2}+b^{2}+c^{2}+52$
$9^{2}=a^{2}+b^{2}+c^{2}+52$
$81-52=a^{2}+b^{2}+c^{2}$
$a^{2}+b^{2}+c^{2}=29$
we know that,
$a^{3}+b^{3}+c^{3}-3 a b c=(a+b+c)$
$\left(a^{2}+b^{2}+c^{2}-a b-b c-c a\right) a^{3}+b^{3}+c^{3}-3 a b c=(a+b+c)\left[\left(a^{2}+b^{2}+c^{2}\right)-(a b+b c+c a)\right] h e r e$
$a+b+c=9$
$a b+b c+c a=26$
$a^{2}+b^{2}+c^{2}=29$
$a^{3}+b^{3}+c^{3}-3 a b c=9[(29-26)]=9 * 3=27$
Hence, the value of $a^{3}+b^{3}+c^{3}-3 a b c$ is 27