Question:
If $a+b+c=9$ and $a^{2}+b^{2}+c^{2}=35$, Find the value of $a^{3}+b^{3}+c^{3}-3 a b c$
Solution:
Given,
$a+b+c=9$ and $a^{2}+b^{2}+c^{2}=35$
We know that,
$(a+b+c)^{2}=a^{2}+b^{2}+c^{2}+2(a b+b c+c a)$
$9^{2}=35+2(a b+b c+c a)$
$81=35+2(a b+b c+c a)$
$81-35=2(a b+b c+c a)$
$46 / 2=a b+b c+c a$
$a b+b c+c a=23$
we know that, $a^{3}+b^{3}+c^{3}-3 a b c=(a+b+c)\left(a^{2}+b^{2}+c^{2}-a b-b c-c a\right)$
$a^{3}+b^{3}+c^{3}-3 a b c=(a+b+c)\left[\left(a^{2}+b^{2}+c^{2}\right)-(a b+b c+c a)\right]$ here,
$a+b+c=9$
$a b+b c+c a=23$
$a^{2}+b^{2}+c^{2}=35 a^{3}+b^{3}+c^{3}-3 a b c=9[(35-23)]=9 * 12=108$
Hence, the value of $a^{3}+b^{3}+c^{3}-3 a b c$ is 108