Question:
If $a, b$ and $c$ be three distinct real numbers in G. P. and $a+b+c=x b$, then $x$ cannot be :
Correct Option: , 4
Solution:
$\frac{\mathrm{b}}{\mathrm{r}}, \mathrm{b}, \mathrm{br} \rightarrow$ G.P. $\quad(|\mathrm{r}| \neq 1)$
given $a+b+c=x b$
$\Rightarrow b / r+b+b r=x b$
$\Rightarrow b=0($ not possible $)$
or $1+\mathrm{r}+\frac{1}{\mathrm{r}}=\mathrm{x} \Rightarrow \mathrm{x}-1=\mathrm{r}+\frac{1}{\mathrm{r}}$
$\Rightarrow x-1>2$ or $x-1<-2$
$\Rightarrow x>3 \quad$ or $x<-1$
So x can't be '2'