If A, B and C are interior angles of a triangle ABC, then sin (B+C2)=

Question:

If $A, B$ and $C$ are interior angles of a triangle $A B C$, then $\sin \left(\frac{B+C}{2}\right)=$

(a) $\sin \frac{A}{2}$

(b) $\cos \frac{A}{2}$

(c) $-\sin \frac{A}{2}$

(d) $-\cos \frac{A}{2}$

Solution:

We know that in triangle $A B C$

$A+B+C=180^{\circ}$

$\Rightarrow B+C=180^{\circ}-A$

$\Rightarrow \frac{B+C}{2}=\frac{90^{\circ}}{2}-\frac{A}{2}$

$\Rightarrow \sin \left(\frac{B+C}{2}\right)=\sin \left(90^{\circ}-\frac{A}{2}\right)$

Since $\sin \left(90^{\circ}-A\right)=\cos A$

So

$\sin \left(\frac{B+C}{2}\right)=\cos \frac{A}{2}$

Hence the correct option is $(b)$

Leave a comment