If a + b = 8 and ab = 6, find the value of

Question:

If $a+b=8$ and $a b=6$, find the value of $a^{3}+b^{3}$

Solution:

Given,

a + b = 8 and ab = 6

We know that,

$a^{3}+b^{3}=(a+b)^{3}-3 a b(a+b)$

$\Rightarrow a^{3}+b^{3}=(a+b)^{3}-3 a b(a+b)$

$\Rightarrow a^{3}+b^{3}=(8)^{3}-3(6)(8)$

$\Rightarrow a^{3}+b^{3}=512-144$

$\Rightarrow a^{3}+b^{3}=368$

Hence, the value of $a^{3}+b^{3}$ is 368

 

Leave a comment