If $A=B=60^{\circ}$, verify that
(i) $\cos (A-B)=\cos A \cos B+\sin A \sin B$
(ii) $\sin (A-B)=\sin A \cos B-\cos A \sin B$
(iii) $\tan (A-B)=\frac{\tan A-\tan B}{1+\tan A \tan B}$
(i) Given:
$A=B=60^{\circ} \ldots \ldots(1)$
To verify:
$\cos (A-B)=\cos A \cos B+\sin A \sin B$....(2)
Now consider left hand side of the expression to be verified in equation (2)
Therefore,
$\cos (A-B)=\cos (60-60)$
$=\cos 0$
$=1$
Now consider right hand side of the expression to be verified in equation (2)
Therefore,
$\cos A \cos B+\sin A \sin B=\cos B \cos B+\sin B \sin B$
$=\cos ^{2} B+\sin ^{2} B$
$=1$
Hence it is verified that,
$\cos (A-B)=\cos A \cos B+\sin A \sin B$
(ii) Given:
$A=B=60^{\circ} \ldots \ldots(1)$
To verify:
$\sin (A-B)=\sin A \cos B-\cos A \sin B$...(2)
Now consider LHS of the expression to be verified in equation (2)
Therefore,
$\sin (A-B)=\sin (B-B)$
$=\sin 0$
$=0$
Now by substituting the value of A and B from equation (1) in the above expression
We get,
$\sin A \cos B-\cos A \sin B=\sin B \cos B-\cos B \sin B$
= 0
Hence it is verified that,
$\sin (A-B)=\sin A \cos B-\cos A \sin B$
(iii) Given:
$A=B=60^{\circ}$...(1)
To verify:
$\tan (A-B)=\frac{\tan A-\tan B}{1+\tan A \tan B}$....(2)
Now consider LHS of the expression to be verified in equation (2)
Therefore,
$\tan (A-B)=\tan (B-B)$
$=\tan 0$
$=0$
Now consider RHS of the expression to be verified in equation (2)
Therefore,
Now by substituting the value of $A$ and $B$ from equation (1) in the above expression We get,
$\frac{\tan A-\tan B}{1+\tan A \tan B}=\frac{\tan B-\tan B}{1+\tan B \tan B}$
$=\frac{0}{1+\tan ^{2} B}$
$=0$
Hence it is verified that,
$\tan (A-B)=\frac{\tan A-\tan B}{1+\tan A \tan B}$