If a – b = 6 and ab = 20, find the value of

Question:

If $a-b=6$ and $a b=20$, find the value of $a^{3}-b^{3}$

Solution:

Given,

a – b = 6 and ab = 20 

We know that,

$a^{3}-b^{3}=(a-b)^{3}+3 a b(a-b)$

$\Rightarrow a^{3}-b^{3}=(a-b)^{3}+3 a b(a-b)$

$\Rightarrow a^{3}-b^{3}=(6)^{3}+3(20)(6)$

$\Rightarrow a^{3}-b^{3}=216+360$

$\Rightarrow a^{3}-b^{3}=576$

Hence, the value of $a^{3}-b^{3}$ is 576

Leave a comment