If $\angle A$ and $\angle P$ are acute angles such that $\tan A=\tan P$, then show that $\angle A=\angle P$.
Given: $\tan A=\tan P$
To show: $\angle A=\angle P$
Consider two right angled triangles $\mathrm{ABC}$ and $\mathrm{PQR}$ such that $\tan A=\tan P$
Therefore we have,
$\tan A=\frac{B C}{A B}$ and $\tan P=\frac{Q R}{P Q}$
Since it is given that $\tan A=\tan P$
Therefore,
$\frac{B C}{A B}=\frac{Q R}{P Q}$
Now by interchanging position of AB and QR by cross multiplication
We get,
$\frac{B C}{Q R}=\frac{A B}{P Q}$
Let $\frac{B C}{Q R}=\frac{A B}{P Q}=k$ (say)....(1)
Now by cross multiplication
$B C=k Q R$ and $A B=k P Q \ldots \ldots(2)$
Now by using Pythagoras theorem in triangles ABC and PQR
We have,
$A C^{2}=A B^{2}+B C^{2}$ and $P R^{2}=P Q^{2}+Q R^{2}$
Therefore
$A C=\sqrt{A B^{2}+B C^{2}}$ and $P R=\sqrt{P Q^{2}+Q R^{2}}$
Now $\frac{A C}{P R}=\frac{\sqrt{A B^{2}+B C^{2}}}{\sqrt{P Q^{2}+Q R^{2}}}$
Now using equation (2)
We get,
$\frac{A C}{P R}=\frac{\sqrt{(k P Q)^{2}+(k Q R)^{2}}}{\sqrt{P Q^{2}+Q R^{2}}}$
$\frac{A C}{P R}=\frac{\sqrt{k^{2} P Q^{2}+k^{2} Q R^{2}}}{\sqrt{P Q^{2}+Q R^{2}}}$
Now by taking $k^{2}$ common
We get,
$\frac{A C}{P R}=\frac{\sqrt{k^{2}\left(P Q^{2}+Q R^{2}\right)}}{\sqrt{P Q^{2}+Q R^{2}}}$
Therefore,
$\frac{A C}{P R}=\frac{k \sqrt{\left(P Q^{2}+Q R^{2}\right)}}{\sqrt{P Q^{2}+Q R^{2}}}$
Now $\sqrt{P Q^{2}+Q R^{2}}$ gets cancelled
Therefore,
$\frac{A C}{P R}=k$....(3)
From (1) and (3)
$\frac{B C}{Q R}=\frac{A B}{P Q}=\frac{A C}{P R}=k$
Therefore, $\triangle A B C \sim \Delta P Q R$
Hence, $\angle A=\angle P$