If $A$ and $B$ are two events such that $A \subset B$ and $P(B) \neq 0$, then which of the following is correct?
A. $P(A \mid B)=\frac{P(B)}{P(A)}$
B. $\mathrm{P}(\mathrm{A} \mid \mathrm{B})<\mathrm{P}(\mathrm{A})$
C. $P(A \mid B) \geq P(A)$
D. None of these
If $A \subset B$, then $A \cap B=A$
$\Rightarrow P(A \cap B)=P(A)$
Also, $P(A)
Consider $P(A \mid B)=\frac{P(A \cap B)}{P(B)}=\frac{P(A)}{P(B)} \neq \frac{P(B)}{P(A)} \ldots$(1)
Consider $\mathrm{P}(\mathrm{A} \mid \mathrm{B})=\frac{\mathrm{P}(\mathrm{A} \cap \mathrm{B})}{\mathrm{P}(\mathrm{B})}=\frac{\mathrm{P}(\mathrm{A})}{\mathrm{P}(\mathrm{B})}$ ...(2)
It is known that, P (B) ≤ 1
$\Rightarrow \frac{1}{P(B)} \geq 1$
$\Rightarrow \frac{P(A)}{P(B)} \geq P(A)$
From $(2)$, we obtain
$\Rightarrow \mathrm{P}(\mathrm{A} \mid \mathrm{B}) \geq \mathrm{P}(\mathrm{A})$ ...(3)
$\therefore \mathrm{P}(\mathrm{A} \mid \mathrm{B})$ is not less than $\mathrm{P}(\mathrm{A})$
Thus, from (3), it can be concluded that the relation given in alternative C is correct.