If A and B are two disjoint sets,

Question:

$\cap$ If $A$ and $B$ are two disjoint sets, then $n(A \cup B)$ is equal to

(a) $n(A)+n(B)$

(b) $n(A)+n(B)-n(A \cap B)$

(c) $n(A)+n(B)+n(A \cap B)$

(d) $n(A) n(B)$

(e) $n(A)-n(B)$

Solution:

(a) $n(A)+n(B)$

Two sets are disjoint if they do not have a common element in them, i.e., $A \cap B=\emptyset$.

$\therefore n(\mathrm{~A} \cup \mathrm{B})=n(\mathrm{~A})+n(\mathrm{~B})$

Leave a comment