If $a$ and $b$ are the roots of $x^{2}-3 x+p=0$ and $c, d$ are roots of $x^{2}-12 x+q=0$, where $a, b, c, d$, form a G.P. Prove that $(q+p):(q-p)=17: 15$.
It is given that $a$ and $b$ are the roots of $x^{2}-3 x+p=0$
$\therefore a+b=3$ and $a b=p \ldots$ (1)
Also, $c$ and $d$ are the roots of $x^{2}-12 x+q=0$
$\therefore c+d=12$ and $c d=q \ldots$ (2)
It is given that $a, b, c, d$ are in G.P.
Let $a=x, b=x r, c=x r^{2}, d=x r^{3}$
From (1) and (2), we obtain
$x+x r=3$
$\Rightarrow x(1+r)=3$
$x r^{2}+x r^{3}=12$
$\Rightarrow x r^{2}(1+r)=12$
On dividing, we obtain
$\frac{x r^{2}(1+r)}{x(1+r)}=\frac{12}{3}$
$\Rightarrow r^{2}=4$
$\Rightarrow r=\pm 2$
When $r=2, x=\frac{3}{1+2}=\frac{3}{3}=1$
When $r=-2, x=\frac{3}{1-2}=\frac{3}{-1}=-3$
Case I:
When $r=2$ and $x=1$,
$a b=x^{2} r=2$
$c d=x^{2} r^{5}=32$
$\therefore \frac{q+p}{q-p}=\frac{32+2}{32-2}=\frac{34}{30}=\frac{17}{15}$
i.e., $(q+p):(q-p)=17: 15$
Case II:
When $r=-2, x=-3$,
$a b=x^{2} r=-18$
$c d=x^{2} r^{5}=-288$
$\therefore \frac{q+p}{q-p}=\frac{-288-18}{-288+18}=\frac{-306}{-270}=\frac{17}{15}$
i.e., $(q+p):(q-p)=17: 15$
Thus, in both the cases, we obtain $(q+p):(q-p)=17: 15$