If $a$ and $b$ are the roots of $x^{2}-3 x+p=0$ and $c$ and $d$ are the roots of $x^{2}-$
$12 x+q=0$, where $a, b, c, d$ from a GP, prove that $(q+p):(q-p)=17: 15$
Given data is,
$x^{2}-3 x+p=0 \rightarrow(1)$
a and b are roots of (1)
So, $(x+a)(x+b)=0$
$x^{2}-(a+b) x+a b=0$
So, $a+b=3$ and $a b=p \rightarrow(2)$
Given data is,
$x^{2}-12 x+q=0 \rightarrow(3)$
c and d are roots of (1)
So, $(x+c)(x+d)=0$
$x^{2}-(c+d) x+c d=0$
So, $c+d=12$ and $c d=q \rightarrow(4)$
a, b, c, d are in GP.(Given data)
Similarly A, AR, AR $^{2}, A R^{3}$ also forms a GP, with common ratio $R$.
From (2)
a + b = 3
A + AR = 3
$\frac{3}{A}=1+R \rightarrow(5)$
From (4),
c + d = 12
$\mathrm{AR}^{2}+\mathrm{AR}^{3}=12$
$\mathrm{AR}^{2}(1+\mathrm{R})=12 \rightarrow(6)$
Substituting value of $(1+R)$ in $(6)$.
R = 2
Now, substitute value of R in (5) to get value of A,
A = 1
Now, the GP required is $A, A R, A R^{2}$, and $A R^{3}$
1, 2, 4, 8…is the required GP.
So,
a = 1, b = 2, c = 4, d = 8
From (2) and (4),
ab = p and cd = q
So, p = 2, and q = 32.
$\frac{q+p}{q-p}=\frac{c d+a b}{c d-a b}=\frac{34}{30}=\frac{17}{15}$
So, $(q+p):(q-p)=17: 15$