If $A$ and $B$ are symmetric matrices of the same order, then $A B^{T}-B A^{T}$ is a
(a) skew-symmetric matrix
(b) : matrix
(c) symmetric matrix
(d) none of these
It is given that, $A$ and $B$ are symmetric matrices of the same order.
$\therefore A^{T}=A$ and $B^{T}=B$ ....(1)
Now,
$\left(A B^{T}-B A^{T}\right)^{T}$
$=(A B-B A)^{T} \quad[U \operatorname{sing}(1)]$
$=(A B)^{T}-(B A)^{T} \quad\left[(X+Y)^{T}=X^{T}+Y^{T}\right]$
$=B^{T} A^{T}-A^{T} B^{T} \quad\left[(X Y)^{T}=Y^{T} X^{T}\right]$
$=B A-A B$ [Using (1)]
$=-\left(A B^{T}-B A^{T}\right) \quad[$ Using (1) $]$
We know that, a matrix $X$ is skew-symmetric if $X^{T}=-X$.
Since $\left(A B^{T}-B A^{T}\right)^{T}=-\left(A B^{T}-B A^{T}\right)$, therefore, $A B^{T}-B A^{T}$ is a skew-symmetric matrix.
Hence, the correct answer is option (a).