If A and B are symmetric matrices of the same order,

Question:

If A and B are symmetric matrices of the same order, write whether AB − BA is symmetric or skew-symmetric or neither of the two.

Solution:

Since $A$ and $B$ are symmetric matrices, $A^{T}=A$ and $B^{T}=B$.

Here,

$(A B-B A)^{T}=(A B)^{T}-(B A)^{T}$

$\Rightarrow(A B-B A)^{T}=B^{T} A^{T}-A^{T} B^{T} \quad\left[\because(A B)^{T}=B^{T} A^{T}\right]$

$\Rightarrow(A B-B A)^{T}=B A-A B \quad\left[\because B^{T}=B\right.$ and $\left.A^{T}=A\right]$

$\Rightarrow(A B-B A)^{T}=-(A B-B A)$

Therefore, $A B-B A$ is skew-symmetric.

Leave a comment

Comments

hjlqobvvng
Nov. 14, 2024, 6:35 a.m.
Muchas gracias. ?Como puedo iniciar sesion?