Question:
If $A$ and $B$ are square matrices of the same order and $A B=3 I$, then $A^{-1}=$____________
Solution:
Given:
$A$ and $B$ are square matrices of the same order
$A B=3 I$
Pre-Multiplying both sides by $A^{-1}$, we get
$\Rightarrow A^{-1}(A B)=A^{-1}(3 I)$
$\Rightarrow\left(A^{-1} A\right) B=3\left(A^{-1} /\right)$
$\Rightarrow(I) B=3 A^{-1}$
$\Rightarrow B=3 A^{-1}$
$\Rightarrow \frac{1}{3} B=A^{-1}$
Hence, if $A$ and $B$ are square matrices of the same order and $A B=3 I$, then $A^{-1}=\frac{1}{3} B$.