Question:
If $A$ and $B$ are square matrices of order 3 and that $|A|=-2,|B|=4$, then $|2 A B|=$
Solution:
Given:
A and B are square matrices of order 3
|A| = –2
|B| = 4
Now,
$|2 A B|=|2 A||B| \quad(\because|A B|=|A||B|$, if they are square matrices of same order $)$
$=|2 A| \times 4 \quad(\because|B|=4)$
$=2^{3}|A| \times 4 \quad(\because$ Order of $A$ is $3 \times 3)$
$=32|A|$
$=32 \times(-2) \quad(\because|A|=-2)$
$=-64$
Hence, $|2 A B|=-64$.