Question:
If $A$ and $B$ are sets, then prove that $A-B, \mid A \cap B$ and $B-A$ are pair wise disjoint.
Solution:
(i) $(A-B)$ and $(A \cap B)$
Let $a \in A-B$
$\Rightarrow a \in \mathrm{A}$ and $a \notin B$
$\Rightarrow a \notin A \cap B$
Hence, $(A-B)$ and $A \cap B$ are disjoint sets.
(ii) $(B-A)$ and $(A \cap B)$
Let $a \in B-A$
$\Rightarrow a \in B$ and $a \notin A$
$\Rightarrow a \notin \mathrm{A} \cap \mathrm{B}$
Hence, $(B-A)$ and $A \cap B$ a re disjoint sets.
(iii) $(A-B)$ and $(B-A)$
$(A-B)=\{x: x \in A$ and $x \notin B\}$
$(B-A)=\{x: x \in B$ and $x \notin A\}$
Hence, $(A-B)$ and $(B-A)$ are disjoint sets.