If $a$ and $b$ are real and $a \neq b$ then show that the roots of the equation $(a-b) x^{2}+5(a+b) x-2(a-b)=0$ are real and unequal.
The given equation is $(a-b) x^{2}+5(a+b) x-2(a-b)=0$.
$\therefore D=[5(a+b)]^{2}-4 \times(a-b) \times[-2(a-b)]$
$=25(a+b)^{2}+8(a-b)^{2}$
Since $a$ and $b$ are real and $a \neq b$, so $(a-b)^{2}>0$ and $(a+b)^{2}>0$.
$\therefore 8(a-b)^{2}>0$ ..........(1) (Product of two positive numbers is always positive)
Also, $25(a+b)^{2}>0$ ..........(2) (Product of two positive numbers is always positive)
Adding (1) and (2), we get
$25(a+b)^{2}+8(a-b)^{2}>0$ (Sum of two positive numbers is always positive)
$\Rightarrow D>0$
Hence, the roots of the given equation are real and unequal.