If A and B are matrices of the same order,

Question:

If $A$ and $B$ are matrices of the same order, then $(3 A-2 B)^{\top}$ is equal to________

Solution:

$(3 A-2 B)^{\top}$

$=(3 A)^{\top}-(2 B)^{\top}$          [For any two matrices $X$ and $Y,(X+Y)^{\top}=X^{\top}+Y^{\top}$ ]

$=3 A^{\top}-2 B^{\top}$              $\left[(k X)^{\top}=k X^{\top}\right.$, where $k$ is any constant $]$

If $A$ and $B$ are matrices of the same order, then $(3 A-2 B)^{\top}$ is equal to $3 A^{T}-2 B^{T}$

Leave a comment